AppAlloy Documentation
Home
  • Glossary
  • 🚀Getting Started
    • Introduce AppAlloy Documentation
    • Build your first AppAlloy app
    • From sheet to app
  • 🗃️Data management
    • Learn data structure
    • Set up data source
      • Integrate with Google Sheets
      • Integrate with Microsoft Excel
      • Build Alloy table
      • Upload local file
    • Manage data type
    • Ultimate guide for data sheet
  • ⚒️Manage table views
    • Design Record View
    • Design Actions
      • Update current record
      • Delete current record
      • Delete many records
      • Create record
      • Open external URL
      • HTTP Request
      • Open phone call popup
      • Open SMS Popup
      • Open email popup
      • Send notification
    • Design Record Components
      • Plain Text
      • Phone number
      • Email
      • URL
      • Map
      • Barcode
      • Checkbox
      • Number
      • Currency
      • Rating
      • Voting
      • Date time
      • Relative date
      • Count Down / Count Up
      • Single Photo
      • Photo Gallery
      • Carousel
      • Audio Player
      • Video Player
      • Youtube Player
      • Vimeo Player
    • Design Form View
    • Design Form fields (synced tables)
      • Text (for synced tables)
      • Number (for synced tables)
      • Date time (for synced tables)
      • Checkbox (for synced table)
      • Options (for synced table)
      • Photos (for synced table)
      • Files (for synced table)
      • Table lookup (for synced table)
      • Signature (for synced table)
    • Design Form fields (Alloy tables)
      • Single line Text (for Alloy table)
      • Long Text (for Alloy table)
      • Phone number (for Alloy table)
      • Email (for Alloy table)
      • Barcode (for Alloy table)
      • Number (for Alloy table)
      • Currency (for Alloy table)
      • Checkbox (for Alloy table)
      • Date (for Alloy table)
      • Photos (for Alloy table)
      • Files (for Alloy table)
      • Single select (for Alloy table)
      • Multiple select (for Alloy table)
      • Address (for Alloy table)
      • Table lookup (for Alloy table)
  • 🎨Manage pages
    • Manage page types
    • Design 'View From' Page
    • Page Layouts
      • List Layout
      • Grid Layout
      • Card Layout
      • Map Layout
      • Checklist Layout
      • Calendar Layout
      • Kanban Layout
    • Design Canvas View Page
    • Canvas Charts
      • Line chart
      • Area Chart
      • Pie Chart
      • Donut Chart
      • Column chart vs. Stacked Column chart
      • Bar chart vs. Stacked bar chart
      • Table
    • Design Form of... Page
  • ⚙️Manage workflow
    • Introduce Workflow
    • Design a workflow
  • 🔌Manage Integration
    • Manage AppAlloy Integration
    • Manage Slack Integration
    • Manage Gmail Integration
    • Manage Google Drive Integration
    • Manage Google Calendar integration
  • 📱Manage App Settings
    • Manage app appearance
  • 🌎App distribution
    • Publish your app
    • Use app as Mobile Web app
    • Use app on AppAlloy Air
  • 🚹Account, team, and plan
    • Manage Account
    • Manage Apps
    • Manage Users
    • Manage Plans
    • Manage Teams
  • #️⃣Learn Power FX
    • Introduce Power FX
    • Operators & Identifiers
    • Formula References
      • Average
      • Concatenate
      • Date
      • DateAdd
      • DateDiff
      • DateValue
      • DateTimeValue
      • Day
      • If
      • Month
      • Now
      • Rand
      • RandBetween
      • Round
      • RoundDown
      • RoundUp
      • Sum
      • Text
      • Today
      • Weeknum
      • Weekday
      • Year
Powered by GitBook
On this page
  • Understand Your Data
  • Identify the display column
  • Check the data types
  • Handle missing data
  • Complete heading row
  • No merged cells
  • Fulfill all cells
  • Standardize Data
  • Normalize Data
  • Create Separate Tables
  • Define tables relation

Was this helpful?

  1. Data management

Ultimate guide for data sheet

Cleaning up your data table before generating a no-code app from it is crucial for ensuring the app's functionality and accuracy. Here's a step-by-step guide

Last updated 9 months ago

Was this helpful?

Understand Your Data

Identify the display column

AppAlloy requires each table to have 1 display column. This column will be detected as the title of the data rows when it is shown as an item in the app.

The display can be the name of a product, the name of a customer, or a unique ID of the row. Whatever it is, if you choose the column as the key column, keep it the first column of your table. AppAlloy detects the first column as the display column.

Check the data types

Checking data types is essential because it ensures that the data in each column is in the correct format for processing, analysis, and integration.

For Google Sheets and local files as CSV., XLSX., or XLS., we recommend using 3 basic types:

  • For string data, we recommend the type "Plain text".

  • For numeral data such as price and quantity, we recommend the type "Number".

  • For date, time, and date & time data, we recommend the type "Date" or "Date time".

Handle missing data

Complete heading row

The row chosen to be your table's heading row must contain the headings for all columns.

These headings will become the field names within your AppAlloy app, so make sure they accurately reflect the type of data contained within each column (e.g., "Customer Name," "Product Price," "Order Date").

No merged cells

While merged cells might seem like a space-saving strategy, they can wreak havoc during the import process.

AppAlloy interprets merged cells as a single data point, which can lead to import errors and compromise the integrity of your information. Treat each cell as a separate entity containing a distinct piece of data.

Fulfill all cells

Strive to ensure complete data for each row within your table, even when it duplicates the data of the other cells from the same column. Missing information can lead to incomplete records within your app, potentially hindering the user experience.

Standardize Data

Consistent data formats are crucial for accurate analysis, reliable integration, and proper display. They prevent errors and ensure that data is interpreted correctly across different systems and tools.

Here are key types to format consistently:

  • Dates: Ensure all dates follow the same format to sort and filter correctly. Example: YYYY-MM-DD or YY-MM-DD, only choose 1 format for all data records.

  • Numbers: Use a consistent format for numerical values, including decimal places and thousands of separators. Example: 1,000.00 vs. 1000

  • Text: Standardize text formats, such as capitalization. Example: "John Smith" (capitalize names).

  • Currency: Use the number type for currency data. Example: $450 should be saved as 45 with type number only.

Normalize Data

Normalizing data is a process used to organize your data to reduce redundancy and improve data integrity. It involves breaking down a large table into smaller ones and defining relationships between them.

Create Separate Tables

If your table has too much information, consider breaking it into smaller, related tables. For example, one table for customers and another for their orders.

Maintain a well-organized data file by dedicating separate sheets to each distinct data table within your app. This simplifies the import process and keeps your data categorized for clarity.

Define tables relation

In each table, assign a unique identifier for each row in a table. This key ensures each record is unique.

For example, customer ID in the Customer table, and order ID in the Order table.

Each table is the main table of a specific set of data, and also the related table for reference information of another table data.

The main table contains the core information. Then each related table contains this core information as related data to the main table.

For example, the order table with has the Order ID, Product, and Quantity as the core information, and the Customer ID as the related data from the Customer table.).

🗃️
Set the first column as a key column
Fill the headings for all columns
Remove all merged cell
Fulfill value for all cells for complete data of records when viewing in app
Each table should be in one sheet or file
Define table relation using the unique ID of each row of the related table